
Chess Position (FEN) generation using Chessboard and Piece Recognition

Satya Biswal, Samruddhi Kahu, Matt Yang
Stanford University

{spbiswal, skahu, msryang}@stanford.edu

Abstract

Our work presents an end-to-end pipeline for automati-
cally converting images of a physical chessboard into stan-
dardized chess notation (FEN). We first use a custom-
trained YOLOv8 detector to locate and classify each piece.
In parallel, we use the U-Net model to do segmentation and
extract the corners of the chessboard. Once the corners are
identified, we apply a perspective transformation using the
detected corners and warp the board into a top-down view.
Subsequently, by subdividing this image into an 8×8 grid,
we can assign each detected piece to the correct square.
In experiments, even though the individual YOLO and U-
Net models achieve great results, the final ensemble model
could only achieve 67% accuracy for the final FEN nota-
tion.

1. Introduction
Currently, chess enthusiasts and learners interact with

chess positions in a variety of ways. For example, they
might play on a physical board, read a chess book or maga-
zine to follow a game, solve puzzles from printed diagrams,
or view a picture shared on social media. In each case, if
they want to analyze the position with a computer, they must
manually recreate the position in an analysis program. This
process is tedious and prone to errors. Our goal is to allevi-
ate this burden by automating the translation of visual input
into an FEN notation that can be directly fed into any chess
engine or analysis software.

The motivation for this work stems from several obser-
vations. First, even experienced players often pause their
workflow just to input a position to see engine evaluations.
Second, learners working through puzzles or studies can-
not immediately benefit from computer-generated annota-
tions without first reconstructing the board by hand. Third,
coaches and trainers lose valuable teaching moments when
students struggle to transcribe positions. By automating
piece detection and position recognition, we can provide
immediate feedback. This approach helps players build in-
tuition about piece placement on a physical board, which

remains the standard format for most tournaments. It also
reduces the risk of transcription mistakes that can lead to
incorrect analyses.

Detecting chess pieces in a real-world scene or a printed
diagram presents several technical challenges. Chess sets
vary in style, and lighting conditions or shadows can ob-
scure piece contours. A camera mounted to one side of
the board will capture a perspective view rather than a per-
fectly top-down image, so we must correct for geometric
distortions. Printed diagrams from books may suffer from
scanning noise, low resolution, or handwritten annotations.
To address these issues, we employ a YOLO based ob-
ject detector that has been trained on a diverse set of real
photographs showing different piece styles and board an-
gles. After detecting pieces and classifying their types, we
trained a U-Net model with manually annotated mask for
detecting the board. We then used the predicted mask to
detect the corner and then performed a perspective trans-
formation to map each detected bounding box onto an 8×8
grid. And eventually used the mapping to extract FEN no-
tation that represents the exact layout and piece position in
the board.

Throughout this work, we combined several chess piece
datasets, sourced from Kaggle [1, 2]. The dataset contains
265 training images, 64 validation images, and 33 test im-
ages, each annotated with bounding boxes for every piece
type. These 265 images include 2894 labeled objects in to-
tal. All photographs were captured from a consistent view-
point with a tripod positioned to the left of the board; how-
ever, to ensure accurate results, we made sure to include
pictures taken of various kinds (wooden, plastic, paper) of
boards. Some pictures also have noise augmentation ap-
plied. By training on this dataset, our model learns to recog-
nize pieces even when they are partially occluded or when
the board appears tilted. Examples of unlabeled images and
their corresponding labeled versions can be seen in Figures
1, 2 (a) and (b).

The input to our algorithm is a single image or a video
frame depicting a chessboard under typical lighting condi-
tions. The input may come from a camera mounted on AR
glasses, or a webcam mounted on a stand. We then use

1



Figure 1. White and green chess board dataset (a) Unlabeled image
(b) Labeled image

a YOLO-based object detector to locate and classify each
chess piece in the image. Once pieces are detected, we ap-
ply a UNet-based perspective-correction step that estimates
the board’s plane and maps detection coordinates onto a
standard 8×8 grid.

Automating this detection and translation process has
several important benefits. First, it greatly reduces the time
required to go from seeing a position to analyzing it. Sec-
ond, it minimizes human error in typing or placing pieces
in a GUI. Third, it opens new possibilities for real-time
coaching and augmented-reality overlays. For enthusiasts,
we can show move recommendations. For learners, we can
illustrate why certain moves work or fail. In a tournament
setting, players can seamlessly verify that a physical board
position matches the digital record. Audiences can also get
live commentary about the moves based on engine analysis.
Finally, this technology could be extended to digitize his-
torical photographs or book diagrams, creating a searchable
database of past games and studies.

To summarize, our work addresses the following prob-
lem: Given an image or video of a 3D or 2D chessboard,
identify each piece’s type and color and determine its loca-
tion on an 8×8 grid. The input is a visual frame captured
under natural conditions. We then use a YOLO for piece de-
tection and a UNet-based geometric mapping step to assign
each piece to the correct square. The output is an annotated
board that is used to extract FEN notation. By automating
this pipeline, we streamline the analysis process, reduce er-
rors, and enable new modes of interactive, augmented learn-
ing and coaching.

2. Related Work
In our literature review, we have found methods to tackle

this problem that fall predominantly in three categories: tra-
ditional computer vision and hybrid methods, CNN-based
pipelines, and hybrid methods.

Early methods relied on edge detection, line finding, and
template matching to locate the board and classify pieces.
Czyżewski proposes a pipeline that first detects straight
lines and lattice points to position the board, then identi-
fies pieces using handcrafted rules [3]. Yang’s ”Building
Chess ID” project uses Canny edge detection with a Hough

Figure 2. White and brown chess board dataset (a) Unlabeled im-
age (b) Labeled image

transform to find grid lines, followed by template matching
for each piece type [4]. Rizo-R’s open-source ”chess-cv”
platform combines contour detection with template classi-
fication but assumes a nearly front-facing board and uni-
form set design [5]. All of these pipelines perform well in
controlled environments but generalize poorly to pictures
of chessboards taken from different angles or with different
lighting conditions.

With the advent of deep learning-based methods, re-
searchers began splitting detection into categories. Mehta’s
ARChessAnalyzer uses segmentation for board detection
with an AlexNet CNN for piece classification [6]. Wölflein
uses a RANSAC-based homography to warp the board and
then applies two CNNs [7]. Conner and Talvi train a
YOLO-based detector on 292 labeled images (2,894 ob-
jects) to enable real-time piece detection and classifica-
tion [8]. Maia combines depth-based segmentation with a
YOLOv4 model to identify squares and pieces [9]. These
modular CNN pipelines achieve high accuracy under lim-
ited variation but require separate training for each compo-
nent and depend on careful geometric preprocessing.

Finally, more recent end-to-end methods predict the
entire 8×8 board configuration directly, avoiding explicit
board segmentation. Masouris trains a single network to
output a 64-cell grid of piece probabilities, achieving full-
position recognition in 15.26% of test images. Chen uses
a depth camera to capture segmented point clouds for each
piece and feeds them into a CNN that classifies piece types
and colors [10]. The caveat is that end-to-end models re-
quire large, diverse training datasets and still often lag be-
hind deep learning based methods.

Overall, given the obsolescence of early methods and the
limited effectiveness and complexity of end-to-end meth-
ods, we decided to stick with deep learning-based models
and methods exposed in opencv library for our project.

3. Data
Our work leverages two distinct chess piece detection

datasets sourced from Kaggle ([1] and [2]). Together, these



Figure 3. (a) Unlabeled chessboard image (b) Labeled chessboard
and chess pieces (c) Mask for chessboard detection

datasets comprise 265 images for training, 64 for validation,
and 33 for testing, each accompanied by detailed labels and
bounding box coordinates for each of the 2894 labeled chess
pieces. The images themselves feature two types of chess-
boards: one with classic green and white squares, and an-
other with brown and white squares. All photographs main-
tain a consistent perspective, captured from a tripod posi-
tioned to the left of the chessboard. However, it’s worth not-
ing that the brown and white square dataset contains images
affected by salt and pepper noise and sometimes presents
only partial views of the chessboard. The annotations cat-
egorize individual chess pieces, ranging from ”white-king”
down to ”black-pawn,” with a total of 2894 labeled objects
distributed across the 362 images. Visual examples of both
raw and annotated chessboard images from both datasets
are provided in Figures 1 and 2.

We employed various image augmentation techniques
during the training of our YOLOv8 and Unet models.
Specifically for chessboard detection with Unet, we metic-
ulously hand-labeled the chessboard corners across both
datasets using Roboflow’s annotation tools. These cor-
ner annotations were then used to generate a binary mask,
clearly segmenting the chessboard as foreground and other
regions as background. Figure 3 (a), (b), and (c) demon-
strate this process, showing an original image, its chess-
board annotation shown in red color, and the derived binary
mask. By pre-generating these binary masks for all train-
ing, validation, and test images and feeding only the image
and mask file paths to our custom dataset and dataloader, we
significantly reduced the computational overhead for mask

Figure 4. (a) Unprojected image (b) Projected image

generation during training, thereby considerably accelerat-
ing the entire process.

4. Methods
In this study, we introduce a pipeline for automated un-

derstanding of chess scenes. Our method begins with em-
ploying the state-of-the-art YOLO object detection model
for the simultaneous detection and recognition of multiple
chess pieces in an image followed by chess board (corners)
detection using Unet. A perspective transformation will
then be applied to project the detected chessboard into a
canonical 2D plane, as shown in Figure 4. This process
yields a 2D image with annotated chess piece locations.
With the UNet-based determination of the chessboard cor-
ners and the subsequent projective transformation, we can
then segment the board into its 64 constituent squares by
uniform division of the image dimensions in Figure 4(b).
Given a fixed board orientation, the identification of indi-
vidual square labels is then straightforward.

As depicted in Figure 5, our algorithm prioritizes
YOLO-based chess piece detection before identifying and
projecting chessboard corners to a 2D plane. This order is
intentionally chosen to prevent the potential loss of chess
pieces located near the board’s periphery, which might oc-
cur during a corner-based cropping and projection step.

4.1. YOLO based chess pieces recognition

In this section, we describe our chess-piece-detection
method using YOLO. We begin by formulating the inputs
and outputs, then explain how we built on the Ultralytics
YOLO codebase (YOLO ≥ 8.2) to train a detector for all
piece classes. To train the model, we begin with a dataset
provided in CSV format, where each row lists an image
filename, a piece or board class, and bounding-box coor-
dinates. Each entry in this spreadsheet identifies which im-
age file is under consideration, specifies whether it contains
a particular chess piece or the board itself, and gives the
rectangle that encloses that object. We convert these CSV
annotations into the text-file format expected by YOLO by
normalizing each box’s center and size relative to the im-
age dimensions. This means that if an image is 800 pixels
wide and a pawn’s bounding box extends from pixel 200 to
300 horizontally, we translate those pixel values into frac-



Figure 5. Algorithmic flowchart for chessboard analysis

tions of the total width so that YOLO always sees values be-
tween zero and one, regardless of actual image size. In ad-
dition, we randomly select ten percent of all training images
to act as ”hard negatives” by creating empty label files for
them, forcing the network to learn that some images contain
no detectable objects. By including these blank examples,
the model does not assume that every image must contain
a piece or a board, which reduces false positives when no
chess content is present.

With this configuration, we train the large YOLOv8 vari-
ant for twenty-five epochs on images resized so that the
shorter side is 1280 pixels. Resizing ensures that even small
details, such as a pawn near the edge of the board, remain
large enough for the network to detect reliably. During
training, standard YOLOv8 augmentations (mosaic, mixup,
copy-paste, small random shifts in hue, saturation, and
brightness, affine transformations, and horizontal or verti-
cal flips) are applied to encourage generalization. In other
words, we create many slightly altered versions of each im-
age so that the model learns to recognize pieces under dif-
ferent lighting conditions, camera angles, and backgrounds.
This process helps the detector perform well on images that
differ from the original training set.

We also adjust the loss multipliers so that precise local-
ization is emphasized by setting the box-regression weight
to 7.5, and classification quality is given a modest boost by
setting the class-loss weight to 1.2, while keeping the distri-
bution focal loss at its default value of 1.0. This weighting
tells the network that it is more important to draw very tight
bounding boxes around each piece than to simply guess the

correct class. At the same time, slightly upweighting the
classification loss ensures that confusing a knight with a
bishop is penalized more heavily than in the default con-
figuration. After twenty-five epochs of training with these
settings, we evaluate performance on a held-out validation
split by computing mean Average Precision at a fifty per-
cent Intersection over Union threshold (map50), and select
the checkpoint that achieves the highest score for deploy-
ment.

At inference time, besides using the finetuned model for
detecting chess pieces in images, we also used finetuned
YOLO for detecting chess pieces in videos. At inference
time, each video frame is processed in two stages to en-
sure accurate detection even under uneven lighting or mod-
est board tilt. First, we resize the original frame so that its
shorter side is 1280 pixels, producing a ”big frame.” By run-
ning YOLOv8 once on this resized version with a moder-
ate confidence threshold (0.15) and non-maximum suppres-
sion at IoU = 0.5, we isolate one or more candidate chess-
board boxes; if multiple appear, we keep only the largest
by area. We then pad this board box by five percent on
all sides to ensure no pieces near the edge are omitted, and
crop that padded region. Since dark pieces on dark squares
can be difficult to detect, we apply Contrast-Limited Adap-
tive Histogram Equalization (CLAHE) to the V channel of
the cropped image, boosting local contrast. In the second
stage, we run YOLOv8 again on the CLAHE-enhanced crop
with a lower confidence threshold (0.05) and enabled test-
time augmentation. Each resulting piece detection is fil-
tered by a per-class threshold—0.04 for black pieces and
0.12 for white pieces to balance recall across colors. To
project these detections back into the original frame, we ac-
count for both the crop’s offset within the resized frame and
the scaling factor used initially. Finally, we perform a cus-
tom, class-agnostic non-maximum suppression with an IoU
threshold of 0.3 to avoid suppressing adjacent pieces of dif-
ferent classes. Any remaining boxes are drawn on the orig-
inal frame, along with a green rectangle around the board.
The result is an annotated video where each frame shows
exactly one detected chessboard and all detected pieces,
each labeled with its class and confidence. At the core of
our filtering step lies the standard IoU formula given by eq
(1).

IoU =
area(A ∩B)

area(A ∪B)
(1)

which ensures that overlapping detections with IoU ≥
0.3 are suppressed in favor of the most confident prediction.
This streamlined training and inference approach achieves
real-time performance (approximately 5 FPS on an RTX
4070) while maintaining high accuracy under varied light-
ing and viewpoint conditions.



4.2. Chess board corners detection

Following YOLO-based chess piece recognition, precise
detection of chessboard corners is essential. This allows
for the projection of the chessboard onto a 2D plane, en-
abling its segmentation into an 8x8 grid for accurate chess
piece localization and subsequent FEN notation generation.
Achieving this precise corner detection proved to be a sig-
nificant challenge, leading us to explore the following ap-
proaches:

4.2.1 GrabCut Segmentation based chess board corner
detection

In this algorithm a robust image processing pipeline is im-
plemented to detect chessboard corners. The algorithm
commences with initial image enhancement, applying a
morphological closing operation to reduce noise and bridge
small gaps, followed by GrabCut segmentation to precisely
isolate the chessboard from the background. This seg-
mented image then undergoes a series of edge detection
steps: conversion to grayscale, Gaussian blurring for noise
reduction, and Canny edge detection, with subsequent di-
lation to ensure connected contours. The system proceeds
to identify contours within the processed image, prioritiz-
ing the largest detected contours and approximating them to
find a four-sided polygon, presumed to be the chessboard.
Once these four corner points are accurately identified and
consistently ordered (e.g., top-left, top-right, bottom-right,
bottom-left), the algorithm calculates the optimal dimen-
sions for the rectified board. This method also incorporates
an outlier detection mechanism, comparing the dimensions
of the rectified image to the original; if the projected im-
age is significantly smaller than expected, it signals a po-
tential failure in the projection, indicating the need for re-
processing. The successfully projected chessboard is then
returned, optionally with a slight border crop.

This method proved highly sensitive to varying illumi-
nation and the presence of nearby objects, as detailed in
the results. Furthermore, optimal hyperparameters (e.g.,
morphological kernel size, GrabCut iterations) varied sig-
nificantly across images, necessitating a second application
of the GrabCut algorithm with adjusted settings in some
cases. Despite these efforts, sensitivity to illumination and
border objects persisted. A key limitation is that this ap-
proach detects the physical chessboard corners, not the pre-
cise corners of the 64-square checkerboard pattern (see Fig-
ure 3 (b) or 6 (c) for an example of checkerboard corners).
The varying offset between physical and checkerboard cor-
ners across different boards prompted exploration of alter-
native corner detection methods, including an unsuccessful
attempt with a YOLO model.

4.2.2 U-Net based corner detection

We finetuned a pre-trained Unet image segmentation model
[11] for detecting the corners of the 64-square checkerboard
pattern. We used the efficientnet-b0 version of the Unet
model pretrained using the imagenet dataset. Dice Loss and
BCE with logits loss were used as the loss functions for
training the Unet along with the Adam optimizer. The la-
bels for the Unet segmentation model contain pixel values
0 and 1 in a mask. In other words, Unet takes an image
as input and outputs a mask containing 0s and 1s. One in-
dicates presence of the 64-square checkerboard pattern and
zero indicates its absence. The binary mask was generated
from the chessboard bounding box which was manually an-
notated using roboflow annotation tool [12]. On the testset,
we achieved an IoU accuracy of 99.22%. However, IoU ac-
curacy measures the overlap between the ground truth mask
and the predicted mask. For our application, we needed
accurate chessboard corner detection. Therefore, we also
measured accuracy of correctly predicting the chessboard
corners which was crucial for successfully generating ac-
curate FEN notations. We achieved around 70% accuracy
for a tolerance of 20 (which is the Euclidean distance in
pixels error allowed for each detected chessboard corner).
Detailed results are discussed in the results section.

4.3. FEN notation generation

Our methodology, outlined in Figure 5, initiates by em-
ploying a fine-tuned YOLO model to detect chess pieces
within the input image. Subsequently, a fine-tuned U-Net
model processes this image to precisely identify the chess-
board’s corners. Using a perspective transform, the chess-
board’s 64-square checkerboard pattern is then projected
onto a 2D canonical plane, thereby providing a clear, un-
warped view. On this rectified checkerboard image, the
64 squares are established by uniformly dividing the im-
age’s width and height into eight segments. Each square is
labeled, and recognized chess pieces are assigned to their
respective squares, serving as the basis for FEN (Forsyth-
Edwards Notation) generation. The FEN generation it-
self involves transforming the center coordinates of YOLO-
detected pieces to this 2D canonical projected plane, and
mapping these transformed piece locations to their corre-
sponding 8x8 grid positions to form the FEN string. The
complete end-to-end pipeline, from initial image to FEN
output, is visually demonstrated in Figure 6 (a)-(e). The
image / information in Figure 6 (e) is used for FEN notation
generation.

5. Experiments
5.1. YOLO

As aforementioned, we quickly identified YoloV8 as the
state-of-the-art model for this task. Thus, we tested the var-



Figure 6. (a) Input Image (b) Chess pieces (YOLO inference) (c)
Chessboard corners (Unet Inference) (d) 2D planar view / warped
image (e) Grid image with chess pieces and chess board squares
recognized.

ious YoloV8 submodels for 10 epochs of 640 images to see
which one was best-suited for our task. We focused on four
metrics:

• Box: The fraction of predicted bounding boxes whose
overlap (IoU) with a ground-truth box exceeds 0.5. It
measures how often detections are correct.

• Recall: The fraction of ground-truth objects that the
model detects at IoU ≥ 0.5. It shows how many true
objects are recovered.

• Map50: The mean of the Average Precision (AP) over

Figure 7. YOLOv8 model size vs accuracy

Figure 8. Accuracies of final model across various pieces

all classes, calculated at a single IoU threshold of 0.50.

• Map50-95: Similar to Map50, but with a stricter
threshold.

The graph in Figure 7 shows that as model size increases
from nano to x2, box precision, recall and mAP50 steadily
improve, while mAP50-95 peaks at the medium variant be-
fore plateauing. The l3 and x2 models offer negligible
mAP50 gains over m3 despite a large jump in parameter
count, suggesting an efficiency maximum at the medium
scale. As efficiency is not a major concern, we used the
large model as our basis. We focused on YoloV8 because
it provides a complete family of variants. YoloV9 and later
versions remain under active development with limited sta-
ble releases, and require some additional information to
train. Overall, the accuracy of YoloV8 models out of the
box is relatively high. The validation mAP50 accuracy is
81.3%. However, accuracy varied across different pieces,
as shown in Figure 8.

Among all piece classes, the model struggled most with
white knights and black bishops, as evidenced by their com-
paratively low mAP50-95 scores (0.464 for white knight
and 0.488 for black bishop). One likely factor is the lim-
ited number of training examples: only 27 white-knight
instances and 32 black-bishop instances were available,
whereas more common pieces like pawns appeared over 90



Figure 9. Accuracy of Ensemble model

times. With so few examples, the network had less oppor-
tunity to learn the distinctive contours and textures that dif-
ferentiate a knight’s carved head or a bishop’s slanted mitre,
especially under varied lighting and board designs. In ad-
dition, knights and bishops can resemble each other when
viewed from certain angles or when partially occluded,
making them harder to distinguish. The knight’s curved,
animal-like shape sometimes blends into shadows or board
patterning, and the bishop’s pointed top may be confused
with the more angular rook in lower-contrast scenes. Taken
together, sparse training data plus similar visual character-
istics under real-world conditions likely explain why these
two piece types showed the weakest performance.

An average mAP accuracy of 81.3% seems reasonable:
however, in video format, the problems with this emerge.
Figure 9, below, is a still from the model being run on a
video of a chess match, demonstrates this.

As shown, when run on videos dissimilar to the training,
test, or validation datasets, the model sometimes incorrectly
predicts similar-looking pieces: for example, recognizing a
black bishop as a black pawn or a black queen as a black
bishop. While these incorrect predictions are still certainly
in the minority, they occur enough to disrupt accurate full-
board recognition. We theorize that this is a result of the
model overfitting on the training set: while we did endeavor
to include pictures taken of several different types of chess-
boards and chess pieces, ultimately, the variation was likely
insufficient.

5.2. Chessboard Corner Detection using Unet

For chessboard corner detection, our exploration encom-
passed two primary techniques, as outlined in Section 4.2:
one utilizing GrabCut segmentation and another based on
a U-Net model. The GrabCut approach, however, exhib-
ited significant susceptibility to varying illumination and the
presence of objects near the chessboard’s periphery. More
critically for our application, GrabCut identified the physi-
cal corners of the chessboard (as shown in Figure 4), rather
than the precise corners of the internal checkerboard pat-

tern, which are essential for the method’s success. This led
us to focus on the U-Net-based corner detection.

The U-Net-based chessboard corner detection leverages
a fine-tuned U-Net, a state-of-the-art Convolutional Neu-
ral Network known for its high accuracy and relative com-
putational efficiency in segmentation tasks. We fine-tuned
this U-Net for checkerboard detection using 265 training
images and evaluated its performance on 33 test images,
as specified in the Dataset section. Initial evaluation using
IoU (Intersection over Union), defined in eq (1), yielded
an accuracy of 99.22%. However, upon visual inspection
of predicted masks, it became apparent that IoU alone was
not an ideal metric for our specific objective. Given that
the efficacy of our overall method critically relies on the ex-
act localization of chessboard (checkerboard) corners rather
than broad pixel classification accuracy, we shifted our eval-
uation metric to the Euclidean distance between the pre-
dicted and actual checkerboard corner coordinates. Table
1 summarizes the average pixel-wise Euclidean distances
for the four chessboard corners across the white and green,
white and brown, and combined datasets. It was observed
that the U-Net model yields better chessboard corner de-
tection accuracy on the white/green dataset. This discrep-
ancy is attributed to the presence of partially visible chess-
boards, coupled with suboptimal contrast and illumination,
in the white/brown dataset, which negatively impacts de-
tection accuracy compared to the consistently clear, well-
contrasted, and well-lit images in the white/green dataset.

5.3. Final Results

Table 2 presents the final results of our ensemble model,
which we evaluated on 33 test images of diverse chessboard
types and pieces. Our assessment covered each stage of the
pipeline:

1. UNet model’s accuracy in detecting corners.

2. YOLO model’s accuracy in recognizing pieces.

3. The integration algorithm’s ability to create an accu-
rate 8x8 grid and assign pieces correctly for FEN no-
tation.

As detailed in Table 2, UNet corner detection achieved
84.8% accuracy, while YOLO piece recognition reached
72.7% accuracy for a complete chessboard. Our end-to-
end pipeline successfully generated correct FEN notation
in 66.7% of test cases. Crucially, when both corner detec-
tion and piece recognition were successful, FEN accuracy
significantly improved to 91.7% (22 out of 24 cases). This
highlights that both accurate corner detection and precise
piece recognition are essential for our system’s proper func-
tion, as no correct FEN notation was produced without both
components working correctly. The primary cause of failure
in our system appears to be YOLO-based piece recognition,



Table 1. Average Euclidean Distance (in pixels) between the ground truth and predicted chessboard corners

Corner Position White and Green
Chessboard Dataset

White and Brown
Chessboard Dataset

Combined
Dataset

Top Left 9.61 44.69 14.92
Top Right 7.41 4.14 6.91
Bottom Left 4.94 82.62 16.71
Bottom Right 6.32 166.25 30.55

Table 2. Performance metrics of chess position recognition system components
System Component Success Rate Accuracy (%)
Corner detection 28/33 84.8
Piece recognition 24/33 72.7
Square assignment algorithm 22/24 91.7
FEN notation generation 22/33 66.7
Combined Success based on Components Success/Total Accuracy (%)
When both corner and piece detection succeed 22/24 91.7
When only corner detection succeeds 22/28 78.6
When only piece detection succeeds 22/24 91.7
When both components fail 0/5 0

indicating that improvements in this area would yield the
greatest overall performance gains in future iterations.

6. Conclusion

In this study, we developed an automated system for an-
alyzing chess board states, integrating a YOLOv8 model
for piece detection and classification with a U-Net model
for precise chessboard corner localization. Individually,
YOLOv8 achieved commendable detection rates, particu-
larly for frequently encountered pieces, and the U-Net ef-
fectively generated segmentation masks enabling the cru-
cial perspective correction to an 8x8 grid. However, de-
spite these strong component performances, our complete
pipeline correctly generated FEN strings for only about
67% of the test cases. This limitation highlights the cumu-
lative impact of even minor inaccuracies in either piece de-
tection or corner localization, which can lead to erroneous
square assignments. Specifically, detection accuracy was
notably lower for classes with limited training examples
(e.g., knights and bishops), and subtle mask misalignments
from the U-Net sometimes caused sufficient corner shifts to
misplace pieces.

To enhance system robustness and push performance be-
yond 67%, several avenues for future work are proposed.
Model-centric improvements include increasing the diver-
sity and volume of training images for underrepresented
piece types and meticulously fine-tuning class-specific con-
fidence thresholds. For the U-Net, incorporating a direct
corner regression head alongside the segmentation mask
or leveraging higher-resolution masks could substantially
improve corner precision. Beyond model refinements,
strengthening the inference pipeline is critical. This could

involve adding a lightweight post-processing step to ver-
ify piece centers within the transformed grid, potentially
snapping misaligned pieces to the nearest valid square. Im-
plementing a feedback loop to reprocess improbable FEN
outputs (e.g., overlapping pieces) with adjusted thresholds
would also be beneficial. Furthermore, collecting ”hard”
negative examples, such as images with background pat-
terns resembling a chessboard, would bolster YOLO’s re-
silience to false positives.

7. Contributions and Acknowledgment

Our team’s contributions were distributed as follows:
Matt Yang was responsible for training the YOLOv8 model
and applying it to chess piece recognition in video. Samrud-
dhi Kahu focused on chessboard corner detection, exploring
both GrabCut-based segmentation and fine-tuning a U-Net
model. Satya Biswal integrated the YOLOv8 and U-Net
model inferences, optimized the Unet model inference, and
worked on grid generation for piece assignment, culminat-
ing in the generation of FEN notation. Satya also created
an app to take a picture of a live chessboard, extract FEN
notation, and display the next move. We will demo this app
in the poster presentation.

References

[1] IMT Kaggle Team, Chess Pieces Detection
Image Dataset. Kaggle. https://www.
kaggle.com/datasets/imtkaggleteam/
chess-pieces-detection-image-dataset

https://www.kaggle.com/datasets/imtkaggleteam/chess-pieces-detection-image-dataset
https://www.kaggle.com/datasets/imtkaggleteam/chess-pieces-detection-image-dataset
https://www.kaggle.com/datasets/imtkaggleteam/chess-pieces-detection-image-dataset


[2] Tanner G., Chess Piece Object Detec-
tion Dataset. Kaggle. https://www.
kaggle.com/datasets/tannergi/
chess-piece-detection

[3] M. Czyżewski, A. Laskowski, and S. Wasik,
“Chessboard and Chess Piece Recognition with
the Support of Neural Networks,” arXiv preprint
arXiv:1708.03898, 2017. https://arxiv.org/
abs/1708.03898

[4] D. Yang, “Building Chess ID,” Medium, Jan. 17,
2016. https://medium.com/@daylenyang/
building-chess-id-99afa57326cd

[5] Rizo-R, Chess-CV: Computer Vision Project to Rec-
ognize Chess Positions. GitHub repository, 2025.
https://github.com/Rizo-R/chess-cv

[6] A. Mehta, “Augmented Reality Chess Analyzer
(ARChessAnalyzer): In-Device Inference of Physi-
cal Chess Game Positions through Board Segmenta-
tion and Piece Recognition using Convolutional Neu-
ral Network,” arXiv preprint arXiv:2009.01649, 2020.
https://arxiv.org/abs/2009.01649

[7] G. Wölflein and O. Arandjelović, “Determining
Chess Game State From an Image,” arXiv preprint

arXiv:2104.14963, 2021. https://arxiv.org/
abs/2104.14963

[8] M. Conner and R. Talvi, “YOLO for Chess Detection:
An Implementation of the YOLO Algorithm,” Project
report, Mar. 2023. https://dothereading.
github.io/projects/YOLO_Chess.pdf

[9] Maia, “Depth-based Segmentation with YOLOv4 for
Chessboard and Piece Detection,” Roboflow Universe
dataset, 2022. (See Roboflow search for “Maia chess
YOLOv4.”)

[10] J. Chen, “Chess Piece Classification and Localiza-
tion Using Depth Camera and CNN,” Technical report,
2022.

[11] O. Ronneberger, P. Fischer, and T. Brox, “U-
Net: Convolutional Networks for Biomedi-
cal Image Segmentation,” in Medical Image
Computing and Computer-Assisted Interven-
tion (MICCAI), vol. 9351, pp. 234–241, 2015.
https://link.springer.com/chapter/
10.1007/978-3-319-24574-4_28

[12] Roboflow, “Roboflow Annotation Tool,” https://
roboflow.com (accessed Jun. 4, 2025).

https://www.kaggle.com/datasets/tannergi/chess-piece-detection
https://www.kaggle.com/datasets/tannergi/chess-piece-detection
https://www.kaggle.com/datasets/tannergi/chess-piece-detection
https://arxiv.org/abs/1708.03898
https://arxiv.org/abs/1708.03898
https://medium.com/@daylenyang/building-chess-id-99afa57326cd
https://medium.com/@daylenyang/building-chess-id-99afa57326cd
https://github.com/Rizo-R/chess-cv
https://arxiv.org/abs/2009.01649
https://arxiv.org/abs/2104.14963
https://arxiv.org/abs/2104.14963
https://dothereading.github.io/projects/YOLO_Chess.pdf
https://dothereading.github.io/projects/YOLO_Chess.pdf
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
https://roboflow.com
https://roboflow.com

